Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1374 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6929 | 0.9101 | 0.7613 | [M:[0.811, 1.189, 0.811, 0.7075, 1.1463, 0.689, 0.6706], q:[0.75, 0.439], qb:[0.3963, 0.4147], phi:[0.5]] | [M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [1, 0], [-1, -1], [0, -2]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}q_{1}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ | ${}$ | -2 | t^2.012 + t^2.067 + t^2.122 + 2*t^2.433 + t^2.506 + t^3. + 2*t^3.439 + t^3.494 + t^4.006 + t^4.024 + t^4.061 + t^4.079 + 3*t^4.134 + t^4.189 + t^4.245 + 2*t^4.445 + 2*t^4.5 + t^4.518 + 2*t^4.555 + t^4.573 + t^4.628 + 3*t^4.866 + 2*t^4.939 + 2*t^5.012 + t^5.067 + t^5.122 + 2*t^5.433 + 2*t^5.451 + 4*t^5.506 + 3*t^5.561 + t^5.617 + 3*t^5.872 + t^5.927 + t^5.945 - 2*t^6. + t^6.018 + t^6.035 - t^6.055 + t^6.073 + t^6.091 + t^6.128 + 3*t^6.146 + t^6.184 + 3*t^6.201 + 3*t^6.257 + t^6.312 + t^6.367 + 2*t^6.439 + 2*t^6.456 + t^6.494 + 3*t^6.512 + t^6.529 + 5*t^6.567 + t^6.585 + 2*t^6.622 + 3*t^6.64 + 2*t^6.678 + t^6.695 + t^6.751 + 5*t^6.878 + 3*t^6.933 + 2*t^6.951 + 3*t^6.988 + t^7.006 + 2*t^7.024 + t^7.061 + 2*t^7.079 + 3*t^7.134 + t^7.189 + t^7.245 + 4*t^7.299 + t^7.372 - 2*t^7.427 + 4*t^7.445 + 2*t^7.462 + t^7.5 + 5*t^7.518 + t^7.555 + 6*t^7.573 + 4*t^7.628 + 3*t^7.684 + t^7.739 + 2*t^7.866 + 3*t^7.883 + 4*t^7.939 + t^7.956 + 2*t^7.994 + t^8.029 + t^8.047 + t^8.049 - 3*t^8.067 + t^8.085 + t^8.102 - 3*t^8.122 + 2*t^8.14 + 3*t^8.158 - t^8.178 + 2*t^8.195 + 3*t^8.213 + t^8.251 + 6*t^8.268 + 4*t^8.305 + t^8.306 + 3*t^8.324 + t^8.36 + t^8.378 + 3*t^8.379 - 5*t^8.433 + t^8.434 + 3*t^8.451 + 2*t^8.468 - 2*t^8.488 + t^8.49 - t^8.506 + 3*t^8.524 + t^8.541 + 5*t^8.579 + t^8.597 + t^8.617 + 5*t^8.634 + 3*t^8.652 + 5*t^8.689 + 3*t^8.707 + 2*t^8.745 + 3*t^8.762 + 2*t^8.8 + t^8.818 + 2*t^8.872 + t^8.873 + 5*t^8.889 + 6*t^8.945 + 2*t^8.962 - t^4.5/y - t^6.512/y - t^6.567/y - t^6.622/y - t^6.933/y + t^7.061/y + t^7.079/y + t^7.134/y + t^7.189/y + (2*t^7.445)/y + (2*t^7.5)/y + t^7.518/y + (2*t^7.555)/y + t^7.573/y + t^7.628/y + t^7.866/y + t^7.939/y + t^8.012/y + (2*t^8.067)/y + t^8.122/y + t^8.378/y + (3*t^8.433)/y + (2*t^8.451)/y + t^8.488/y + (4*t^8.506)/y - t^8.524/y + (3*t^8.561)/y - t^8.579/y + t^8.617/y - (2*t^8.634)/y - t^8.689/y - t^8.745/y + (4*t^8.872)/y + (2*t^8.927)/y + t^8.945/y - t^4.5*y - t^6.512*y - t^6.567*y - t^6.622*y - t^6.933*y + t^7.061*y + t^7.079*y + t^7.134*y + t^7.189*y + 2*t^7.445*y + 2*t^7.5*y + t^7.518*y + 2*t^7.555*y + t^7.573*y + t^7.628*y + t^7.866*y + t^7.939*y + t^8.012*y + 2*t^8.067*y + t^8.122*y + t^8.378*y + 3*t^8.433*y + 2*t^8.451*y + t^8.488*y + 4*t^8.506*y - t^8.524*y + 3*t^8.561*y - t^8.579*y + t^8.617*y - 2*t^8.634*y - t^8.689*y - t^8.745*y + 4*t^8.872*y + 2*t^8.927*y + t^8.945*y | t^2.012/g2^2 + t^2.067/(g1*g2) + t^2.122/g1^2 + 2*g1*g2*t^2.433 + t^2.506/g2 + t^3. + 2*g1*t^3.439 + g2*t^3.494 + t^4.006/g2 + t^4.024/g2^4 + t^4.061/g1 + t^4.079/(g1*g2^3) + (3*t^4.134)/(g1^2*g2^2) + t^4.189/(g1^3*g2) + t^4.245/g1^4 + (2*g1*t^4.445)/g2 + 2*t^4.5 + t^4.518/g2^3 + (2*g2*t^4.555)/g1 + t^4.573/(g1*g2^2) + t^4.628/(g1^2*g2) + 3*g1^2*g2^2*t^4.866 + 2*g1*t^4.939 + (2*t^5.012)/g2^2 + t^5.067/(g1*g2) + t^5.122/g1^2 + 2*g1*g2*t^5.433 + (2*g1*t^5.451)/g2^2 + (4*t^5.506)/g2 + (3*t^5.561)/g1 + (g2*t^5.617)/g1^2 + 3*g1^2*g2*t^5.872 + g1*g2^2*t^5.927 + (g1*t^5.945)/g2 - 2*t^6. + t^6.018/g2^3 + t^6.035/g2^6 - (g2*t^6.055)/g1 + t^6.073/(g1*g2^2) + t^6.091/(g1*g2^5) + t^6.128/(g1^2*g2) + (3*t^6.146)/(g1^2*g2^4) + t^6.184/g1^3 + (3*t^6.201)/(g1^3*g2^3) + (3*t^6.257)/(g1^4*g2^2) + t^6.312/(g1^5*g2) + t^6.367/g1^6 + 2*g1*t^6.439 + (2*g1*t^6.456)/g2^3 + g2*t^6.494 + (3*t^6.512)/g2^2 + t^6.529/g2^5 + (5*t^6.567)/(g1*g2) + t^6.585/(g1*g2^4) + (2*t^6.622)/g1^2 + (3*t^6.64)/(g1^2*g2^3) + (2*g2*t^6.678)/g1^3 + t^6.695/(g1^3*g2^2) + t^6.751/(g1^4*g2) + 5*g1^2*t^6.878 + 3*g1*g2*t^6.933 + (2*g1*t^6.951)/g2^2 + 3*g2^2*t^6.988 + t^7.006/g2 + (2*t^7.024)/g2^4 + t^7.061/g1 + (2*t^7.079)/(g1*g2^3) + (3*t^7.134)/(g1^2*g2^2) + t^7.189/(g1^3*g2) + t^7.245/g1^4 + 4*g1^3*g2^3*t^7.299 + g1^2*g2*t^7.372 - 2*g1*g2^2*t^7.427 + (4*g1*t^7.445)/g2 + (2*g1*t^7.462)/g2^4 + t^7.5 + (5*t^7.518)/g2^3 + (g2*t^7.555)/g1 + (6*t^7.573)/(g1*g2^2) + (4*t^7.628)/(g1^2*g2) + (3*t^7.684)/g1^3 + (g2*t^7.739)/g1^4 + 2*g1^2*g2^2*t^7.866 + (3*g1^2*t^7.883)/g2 + 4*g1*t^7.939 + (g1*t^7.956)/g2^3 + 2*g2*t^7.994 + t^8.029/g2^5 + t^8.047/g2^8 + (g2^2*t^8.049)/g1 - (3*t^8.067)/(g1*g2) + t^8.085/(g1*g2^4) + t^8.102/(g1*g2^7) - (3*t^8.122)/g1^2 + (2*t^8.14)/(g1^2*g2^3) + (3*t^8.158)/(g1^2*g2^6) - (g2*t^8.178)/g1^3 + (2*t^8.195)/(g1^3*g2^2) + (3*t^8.213)/(g1^3*g2^5) + t^8.251/(g1^4*g2) + (6*t^8.268)/(g1^4*g2^4) + 4*g1^3*g2^2*t^8.305 + t^8.306/g1^5 + (3*t^8.324)/(g1^5*g2^3) + g1^2*g2^3*t^8.36 + g1^2*t^8.378 + (3*t^8.379)/(g1^6*g2^2) - 5*g1*g2*t^8.433 + t^8.434/(g1^7*g2) + (3*g1*t^8.451)/g2^2 + (2*g1*t^8.468)/g2^5 - 2*g2^2*t^8.488 + t^8.49/g1^8 - t^8.506/g2 + (3*t^8.524)/g2^4 + t^8.541/g2^7 + (5*t^8.579)/(g1*g2^3) + t^8.597/(g1*g2^6) + (g2*t^8.617)/g1^2 + (5*t^8.634)/(g1^2*g2^2) + (3*t^8.652)/(g1^2*g2^5) + (5*t^8.689)/(g1^3*g2) + (3*t^8.707)/(g1^3*g2^4) + (2*t^8.745)/g1^4 + (3*t^8.762)/(g1^4*g2^3) + (2*g2*t^8.8)/g1^5 + t^8.818/(g1^5*g2^2) + 2*g1^2*g2*t^8.872 + t^8.873/(g1^6*g2) + (5*g1^2*t^8.889)/g2^2 + (6*g1*t^8.945)/g2 + (2*g1*t^8.962)/g2^4 - t^4.5/y - t^6.512/(g2^2*y) - t^6.567/(g1*g2*y) - t^6.622/(g1^2*y) - (g1*g2*t^6.933)/y + t^7.061/(g1*y) + t^7.079/(g1*g2^3*y) + t^7.134/(g1^2*g2^2*y) + t^7.189/(g1^3*g2*y) + (2*g1*t^7.445)/(g2*y) + (2*t^7.5)/y + t^7.518/(g2^3*y) + (2*g2*t^7.555)/(g1*y) + t^7.573/(g1*g2^2*y) + t^7.628/(g1^2*g2*y) + (g1^2*g2^2*t^7.866)/y + (g1*t^7.939)/y + t^8.012/(g2^2*y) + (2*t^8.067)/(g1*g2*y) + t^8.122/(g1^2*y) + (g1^2*t^8.378)/y + (3*g1*g2*t^8.433)/y + (2*g1*t^8.451)/(g2^2*y) + (g2^2*t^8.488)/y + (4*t^8.506)/(g2*y) - t^8.524/(g2^4*y) + (3*t^8.561)/(g1*y) - t^8.579/(g1*g2^3*y) + (g2*t^8.617)/(g1^2*y) - (2*t^8.634)/(g1^2*g2^2*y) - t^8.689/(g1^3*g2*y) - t^8.745/(g1^4*y) + (4*g1^2*g2*t^8.872)/y + (2*g1*g2^2*t^8.927)/y + (g1*t^8.945)/(g2*y) - t^4.5*y - (t^6.512*y)/g2^2 - (t^6.567*y)/(g1*g2) - (t^6.622*y)/g1^2 - g1*g2*t^6.933*y + (t^7.061*y)/g1 + (t^7.079*y)/(g1*g2^3) + (t^7.134*y)/(g1^2*g2^2) + (t^7.189*y)/(g1^3*g2) + (2*g1*t^7.445*y)/g2 + 2*t^7.5*y + (t^7.518*y)/g2^3 + (2*g2*t^7.555*y)/g1 + (t^7.573*y)/(g1*g2^2) + (t^7.628*y)/(g1^2*g2) + g1^2*g2^2*t^7.866*y + g1*t^7.939*y + (t^8.012*y)/g2^2 + (2*t^8.067*y)/(g1*g2) + (t^8.122*y)/g1^2 + g1^2*t^8.378*y + 3*g1*g2*t^8.433*y + (2*g1*t^8.451*y)/g2^2 + g2^2*t^8.488*y + (4*t^8.506*y)/g2 - (t^8.524*y)/g2^4 + (3*t^8.561*y)/g1 - (t^8.579*y)/(g1*g2^3) + (g2*t^8.617*y)/g1^2 - (2*t^8.634*y)/(g1^2*g2^2) - (t^8.689*y)/(g1^3*g2) - (t^8.745*y)/g1^4 + 4*g1^2*g2*t^8.872*y + 2*g1*g2^2*t^8.927*y + (g1*t^8.945*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
882 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6721 | 0.8687 | 0.7736 | [M:[0.8103, 1.1897, 0.8103, 0.7064, 1.1468, 0.6897], q:[0.75, 0.4397], qb:[0.3968, 0.4135], phi:[0.5]] | t^2.069 + t^2.119 + 2*t^2.431 + t^2.51 + t^3. + 2*t^3.44 + t^3.49 + t^3.981 + t^4.01 + t^4.06 + 2*t^4.138 + t^4.189 + t^4.239 + 2*t^4.5 + 2*t^4.55 + t^4.579 + t^4.629 + 3*t^4.862 + 2*t^4.94 + t^5.019 + t^5.069 + t^5.119 + 2*t^5.431 + 3*t^5.51 + 3*t^5.56 + t^5.61 + 3*t^5.871 + t^5.921 + t^5.95 - 2*t^6. - t^4.5/y - t^4.5*y | detail |