Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1373 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6587 0.8471 0.7777 [M:[0.7978, 1.2022, 0.7978, 0.6887, 1.1557, 1.1422, 0.7022], q:[0.75, 0.4522], qb:[0.4057, 0.3922], phi:[0.5]] [M:[[1, 1], [-1, -1], [1, 1], [-2, 0], [1, 0], [0, 1], [-1, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{7}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{6}M_{7}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.066 + t^2.107 + 2*t^2.393 + t^3. + 2*t^3.426 + 2*t^3.467 + t^3.853 + t^4.033 + t^4.074 + t^4.132 + t^4.173 + 2*t^4.213 + 2*t^4.46 + 2*t^4.5 + 3*t^4.787 + t^5.066 + t^5.107 + 2*t^5.393 + 2*t^5.493 + 4*t^5.533 + 2*t^5.574 + 3*t^5.82 + 3*t^5.86 + t^5.919 - 3*t^6. - t^6.04 + t^6.099 + t^6.14 + t^6.198 + t^6.239 + 2*t^6.246 + 2*t^6.279 + 2*t^6.32 + 2*t^6.426 + 2*t^6.467 + 2*t^6.526 + 2*t^6.566 + 2*t^6.607 + 6*t^6.853 + 5*t^6.893 + 2*t^6.934 - t^7.033 - t^7.074 + t^7.132 + t^7.173 + 4*t^7.18 + t^7.213 + 2*t^7.279 - 2*t^7.36 + 2*t^7.46 + 2*t^7.5 + 2*t^7.559 + 4*t^7.599 + 4*t^7.64 + 2*t^7.68 + t^7.706 + 2*t^7.787 + 4*t^7.886 + 5*t^7.926 + t^7.967 + t^7.985 - 2*t^8.066 - 5*t^8.107 - t^8.147 + t^8.165 + t^8.206 + 4*t^8.213 + t^8.246 + 4*t^8.254 + t^8.264 + t^8.287 + t^8.305 + 2*t^8.313 + 2*t^8.345 + 2*t^8.386 - 6*t^8.393 + 3*t^8.426 - 2*t^8.434 + 2*t^8.493 + 2*t^8.533 + 2*t^8.592 + 2*t^8.632 + 3*t^8.64 + 2*t^8.673 + 2*t^8.713 + 2*t^8.82 + 2*t^8.86 + 6*t^8.919 + 7*t^8.96 - t^4.5/y - t^6.566/y - t^6.607/y - t^6.893/y + t^7.033/y + t^7.074/y + t^7.173/y + (2*t^7.46)/y + (2*t^7.5)/y + t^7.787/y - t^7.926/y - t^7.967/y + t^8.066/y + (2*t^8.107)/y + (3*t^8.393)/y + t^8.434/y + (2*t^8.493)/y + (4*t^8.533)/y + (2*t^8.574)/y - t^8.632/y - t^8.673/y - t^8.713/y + (4*t^8.82)/y + (4*t^8.86)/y + t^8.919/y - t^4.5*y - t^6.566*y - t^6.607*y - t^6.893*y + t^7.033*y + t^7.074*y + t^7.173*y + 2*t^7.46*y + 2*t^7.5*y + t^7.787*y - t^7.926*y - t^7.967*y + t^8.066*y + 2*t^8.107*y + 3*t^8.393*y + t^8.434*y + 2*t^8.493*y + 4*t^8.533*y + 2*t^8.574*y - t^8.632*y - t^8.673*y - t^8.713*y + 4*t^8.82*y + 4*t^8.86*y + t^8.919*y t^2.066/g1^2 + t^2.107/(g1*g2) + 2*g1*g2*t^2.393 + t^3. + 2*g2*t^3.426 + 2*g1*t^3.467 + g2^2*t^3.853 + t^4.033/g1 + t^4.074/g2 + t^4.132/g1^4 + t^4.173/(g1^3*g2) + (2*t^4.213)/(g1^2*g2^2) + (2*g2*t^4.46)/g1 + 2*t^4.5 + 3*g1^2*g2^2*t^4.787 + t^5.066/g1^2 + t^5.107/(g1*g2) + 2*g1*g2*t^5.393 + (2*g2*t^5.493)/g1^2 + (4*t^5.533)/g1 + (2*t^5.574)/g2 + 3*g1*g2^2*t^5.82 + 3*g1^2*g2*t^5.86 + (g2^2*t^5.919)/g1^2 - 3*t^6. - (g1*t^6.04)/g2 + t^6.099/g1^3 + t^6.14/(g1^2*g2) + t^6.198/g1^6 + t^6.239/(g1^5*g2) + 2*g1*g2^3*t^6.246 + (2*t^6.279)/(g1^4*g2^2) + (2*t^6.32)/(g1^3*g2^3) + 2*g2*t^6.426 + 2*g1*t^6.467 + (2*g2*t^6.526)/g1^3 + (2*t^6.566)/g1^2 + (2*t^6.607)/(g1*g2) + 6*g2^2*t^6.853 + 5*g1*g2*t^6.893 + 2*g1^2*t^6.934 - t^7.033/g1 - t^7.074/g2 + t^7.132/g1^4 + t^7.173/(g1^3*g2) + 4*g1^3*g2^3*t^7.18 + t^7.213/(g1^2*g2^2) + 2*g2^3*t^7.279 - 2*g1^2*g2*t^7.36 + (2*g2*t^7.46)/g1 + 2*t^7.5 + (2*g2*t^7.559)/g1^4 + (4*t^7.599)/g1^3 + (4*t^7.64)/(g1^2*g2) + (2*t^7.68)/(g1*g2^2) + g2^4*t^7.706 + 2*g1^2*g2^2*t^7.787 + (4*g2^2*t^7.886)/g1 + 5*g2*t^7.926 + g1*t^7.967 + (g2^2*t^7.985)/g1^4 - (2*t^8.066)/g1^2 - (5*t^8.107)/(g1*g2) - t^8.147/g2^2 + t^8.165/g1^5 + t^8.206/(g1^4*g2) + 4*g1^2*g2^3*t^8.213 + t^8.246/(g1^3*g2^2) + 4*g1^3*g2^2*t^8.254 + t^8.264/g1^8 + t^8.287/(g1^2*g2^3) + t^8.305/(g1^7*g2) + (2*g2^3*t^8.313)/g1 + (2*t^8.345)/(g1^6*g2^2) + (2*t^8.386)/(g1^5*g2^3) - 6*g1*g2*t^8.393 + (3*t^8.426)/(g1^4*g2^4) - 2*g1^2*t^8.434 + (2*g2*t^8.493)/g1^2 + (2*t^8.533)/g1 + (2*g2*t^8.592)/g1^5 + (2*t^8.632)/g1^4 + 3*g1^2*g2^4*t^8.64 + (2*t^8.673)/(g1^3*g2) + (2*t^8.713)/(g1^2*g2^2) + 2*g1*g2^2*t^8.82 + 2*g1^2*g2*t^8.86 + (6*g2^2*t^8.919)/g1^2 + (7*g2*t^8.96)/g1 - t^4.5/y - t^6.566/(g1^2*y) - t^6.607/(g1*g2*y) - (g1*g2*t^6.893)/y + t^7.033/(g1*y) + t^7.074/(g2*y) + t^7.173/(g1^3*g2*y) + (2*g2*t^7.46)/(g1*y) + (2*t^7.5)/y + (g1^2*g2^2*t^7.787)/y - (g2*t^7.926)/y - (g1*t^7.967)/y + t^8.066/(g1^2*y) + (2*t^8.107)/(g1*g2*y) + (3*g1*g2*t^8.393)/y + (g1^2*t^8.434)/y + (2*g2*t^8.493)/(g1^2*y) + (4*t^8.533)/(g1*y) + (2*t^8.574)/(g2*y) - t^8.632/(g1^4*y) - t^8.673/(g1^3*g2*y) - t^8.713/(g1^2*g2^2*y) + (4*g1*g2^2*t^8.82)/y + (4*g1^2*g2*t^8.86)/y + (g2^2*t^8.919)/(g1^2*y) - t^4.5*y - (t^6.566*y)/g1^2 - (t^6.607*y)/(g1*g2) - g1*g2*t^6.893*y + (t^7.033*y)/g1 + (t^7.074*y)/g2 + (t^7.173*y)/(g1^3*g2) + (2*g2*t^7.46*y)/g1 + 2*t^7.5*y + g1^2*g2^2*t^7.787*y - g2*t^7.926*y - g1*t^7.967*y + (t^8.066*y)/g1^2 + (2*t^8.107*y)/(g1*g2) + 3*g1*g2*t^8.393*y + g1^2*t^8.434*y + (2*g2*t^8.493*y)/g1^2 + (4*t^8.533*y)/g1 + (2*t^8.574*y)/g2 - (t^8.632*y)/g1^4 - (t^8.673*y)/(g1^3*g2) - (t^8.713*y)/(g1^2*g2^2) + 4*g1*g2^2*t^8.82*y + 4*g1^2*g2*t^8.86*y + (g2^2*t^8.919*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
881 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6383 0.8085 0.7895 [M:[0.7923, 1.2077, 0.7923, 0.6923, 1.1539, 1.1384], q:[0.75, 0.4577], qb:[0.4039, 0.3884], phi:[0.5]] t^2.077 + 2*t^2.377 + t^3. + 2*t^3.415 + 2*t^3.462 + t^3.83 + t^3.877 + t^4.038 + t^4.085 + t^4.154 + t^4.246 + 2*t^4.454 + 3*t^4.754 + t^5.077 + 2*t^5.377 + 2*t^5.492 + 2*t^5.538 + 3*t^5.792 + 3*t^5.838 + t^5.907 - 3*t^6. - t^4.5/y - t^4.5*y detail