Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1368 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ 0.6719 0.869 0.7731 [M:[0.8085, 1.1915, 0.8085, 0.6915, 1.1542, 0.6915], q:[0.75, 0.4415], qb:[0.4042, 0.4042], phi:[0.5]] [M:[[2], [-2], [2], [-2], [1], [-2]], q:[[0], [-2]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{6}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 0 2*t^2.075 + 2*t^2.425 + t^2.537 + t^3. + 3*t^3.463 + t^3.925 + 2*t^4.037 + 4*t^4.149 + 4*t^4.5 + 2*t^4.612 + 3*t^4.851 + 2*t^4.963 + 3*t^5.075 + 2*t^5.425 + 7*t^5.537 + 4*t^5.888 + 2*t^6.112 + 6*t^6.224 + 2*t^6.351 + 4*t^6.463 + 8*t^6.575 + 4*t^6.687 + 9*t^6.925 + 2*t^7.037 + 5*t^7.149 + 4*t^7.276 + 2*t^7.388 + 4*t^7.5 + 11*t^7.612 + 3*t^7.851 + 8*t^7.963 + 4*t^8.187 + 9*t^8.299 + 5*t^8.313 - 2*t^8.425 + 2*t^8.537 + 10*t^8.649 + 6*t^8.761 + 3*t^8.776 + 4*t^8.888 - t^4.5/y - (2*t^6.575)/y - t^6.925/y + t^7.037/y + t^7.149/y + (4*t^7.5)/y + (2*t^7.612)/y + t^7.851/y + t^7.963/y + (3*t^8.075)/y + (4*t^8.425)/y + (7*t^8.537)/y - (3*t^8.649)/y + (6*t^8.888)/y - t^4.5*y - 2*t^6.575*y - t^6.925*y + t^7.037*y + t^7.149*y + 4*t^7.5*y + 2*t^7.612*y + t^7.851*y + t^7.963*y + 3*t^8.075*y + 4*t^8.425*y + 7*t^8.537*y - 3*t^8.649*y + 6*t^8.888*y (2*t^2.075)/g1^2 + 2*g1^2*t^2.425 + t^2.537/g1 + t^3. + 3*g1*t^3.463 + g1^2*t^3.925 + (2*t^4.037)/g1 + (4*t^4.149)/g1^4 + 4*t^4.5 + (2*t^4.612)/g1^3 + 3*g1^4*t^4.851 + 2*g1*t^4.963 + (3*t^5.075)/g1^2 + 2*g1^2*t^5.425 + (7*t^5.537)/g1 + 4*g1^3*t^5.888 + (2*t^6.112)/g1^3 + (6*t^6.224)/g1^6 + 2*g1^4*t^6.351 + 4*g1*t^6.463 + (8*t^6.575)/g1^2 + (4*t^6.687)/g1^5 + 9*g1^2*t^6.925 + (2*t^7.037)/g1 + (5*t^7.149)/g1^4 + 4*g1^6*t^7.276 + 2*g1^3*t^7.388 + 4*t^7.5 + (11*t^7.612)/g1^3 + 3*g1^4*t^7.851 + 8*g1*t^7.963 + (4*t^8.187)/g1^5 + (9*t^8.299)/g1^8 + 5*g1^5*t^8.313 - 2*g1^2*t^8.425 + (2*t^8.537)/g1 + (10*t^8.649)/g1^4 + (6*t^8.761)/g1^7 + 3*g1^6*t^8.776 + 4*g1^3*t^8.888 - t^4.5/y - (2*t^6.575)/(g1^2*y) - (g1^2*t^6.925)/y + t^7.037/(g1*y) + t^7.149/(g1^4*y) + (4*t^7.5)/y + (2*t^7.612)/(g1^3*y) + (g1^4*t^7.851)/y + (g1*t^7.963)/y + (3*t^8.075)/(g1^2*y) + (4*g1^2*t^8.425)/y + (7*t^8.537)/(g1*y) - (3*t^8.649)/(g1^4*y) + (6*g1^3*t^8.888)/y - t^4.5*y - (2*t^6.575*y)/g1^2 - g1^2*t^6.925*y + (t^7.037*y)/g1 + (t^7.149*y)/g1^4 + 4*t^7.5*y + (2*t^7.612*y)/g1^3 + g1^4*t^7.851*y + g1*t^7.963*y + (3*t^8.075*y)/g1^2 + 4*g1^2*t^8.425*y + (7*t^8.537*y)/g1 - (3*t^8.649*y)/g1^4 + 6*g1^3*t^8.888*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
879 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ 0.6512 0.8292 0.7854 [M:[0.8048, 1.1952, 0.8048, 0.6952, 1.1524], q:[0.75, 0.4452], qb:[0.4024, 0.4024], phi:[0.5]] t^2.086 + 2*t^2.414 + t^2.543 + t^3. + 3*t^3.457 + 2*t^3.914 + 2*t^4.043 + 2*t^4.171 + 2*t^4.5 + t^4.629 + 3*t^4.829 + 2*t^4.957 + 2*t^5.086 + 2*t^5.414 + 4*t^5.543 + 4*t^5.871 - t^4.5/y - t^4.5*y detail