Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1361 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ 0.593 0.7591 0.7812 [M:[0.6851, 1.105, 0.79, 1.105, 1.105, 0.79], q:[0.7762, 0.5387], qb:[0.6713, 0.2238], phi:[0.4475]] [M:[[12], [-4], [8], [-4], [-4], [8]], q:[[-1], [-11]], qb:[[3], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$ ${}$ -4 t^2.055 + t^2.287 + 2*t^2.37 + t^3. + 3*t^3.315 + t^4.028 + t^4.11 + 2*t^4.343 + 2*t^4.425 + 2*t^4.575 + t^4.657 + 3*t^4.74 + t^4.972 + t^5.287 + 6*t^5.37 + 2*t^5.602 + 5*t^5.685 - 4*t^6. + t^6.083 + t^6.166 + 2*t^6.315 + 2*t^6.398 + 2*t^6.48 + 6*t^6.63 + 2*t^6.713 + 3*t^6.795 + 2*t^6.862 + t^7.028 + 4*t^7.11 - t^7.26 + 2*t^7.343 + 4*t^7.425 + t^7.575 + 3*t^7.657 + 9*t^7.74 + 4*t^7.89 + 2*t^8.055 + t^8.138 + t^8.221 - 2*t^8.287 - 7*t^8.37 + 2*t^8.453 + 2*t^8.536 + t^8.602 + 10*t^8.685 + 2*t^8.768 + 3*t^8.851 + 3*t^8.917 - t^4.343/y - t^6.398/y - (2*t^6.713)/y + (2*t^7.028)/y + t^7.343/y + (2*t^7.425)/y + t^7.74/y + (2*t^7.972)/y + t^8.055/y + (2*t^8.287)/y + (5*t^8.37)/y - t^8.453/y + (3*t^8.602)/y + (6*t^8.685)/y - (2*t^8.768)/y - t^4.343*y - t^6.398*y - 2*t^6.713*y + 2*t^7.028*y + t^7.343*y + 2*t^7.425*y + t^7.74*y + 2*t^7.972*y + t^8.055*y + 2*t^8.287*y + 5*t^8.37*y - t^8.453*y + 3*t^8.602*y + 6*t^8.685*y - 2*t^8.768*y g1^12*t^2.055 + t^2.287/g1^10 + 2*g1^8*t^2.37 + t^3. + (3*t^3.315)/g1^4 + g1^6*t^4.028 + g1^24*t^4.11 + 2*g1^2*t^4.343 + 2*g1^20*t^4.425 + (2*t^4.575)/g1^20 + t^4.657/g1^2 + 3*g1^16*t^4.74 + t^4.972/g1^6 + t^5.287/g1^10 + 6*g1^8*t^5.37 + (2*t^5.602)/g1^14 + 5*g1^4*t^5.685 - 4*t^6. + g1^18*t^6.083 + g1^36*t^6.166 + (2*t^6.315)/g1^4 + 2*g1^14*t^6.398 + 2*g1^32*t^6.48 + (6*t^6.63)/g1^8 + 2*g1^10*t^6.713 + 3*g1^28*t^6.795 + (2*t^6.862)/g1^30 + g1^6*t^7.028 + 4*g1^24*t^7.11 - t^7.26/g1^16 + 2*g1^2*t^7.343 + 4*g1^20*t^7.425 + t^7.575/g1^20 + (3*t^7.657)/g1^2 + 9*g1^16*t^7.74 + (4*t^7.89)/g1^24 + 2*g1^12*t^8.055 + g1^30*t^8.138 + g1^48*t^8.221 - (2*t^8.287)/g1^10 - 7*g1^8*t^8.37 + 2*g1^26*t^8.453 + 2*g1^44*t^8.536 + t^8.602/g1^14 + 10*g1^4*t^8.685 + 2*g1^22*t^8.768 + 3*g1^40*t^8.851 + (3*t^8.917)/g1^18 - (g1^2*t^4.343)/y - (g1^14*t^6.398)/y - (2*g1^10*t^6.713)/y + (2*g1^6*t^7.028)/y + (g1^2*t^7.343)/y + (2*g1^20*t^7.425)/y + (g1^16*t^7.74)/y + (2*t^7.972)/(g1^6*y) + (g1^12*t^8.055)/y + (2*t^8.287)/(g1^10*y) + (5*g1^8*t^8.37)/y - (g1^26*t^8.453)/y + (3*t^8.602)/(g1^14*y) + (6*g1^4*t^8.685)/y - (2*g1^22*t^8.768)/y - g1^2*t^4.343*y - g1^14*t^6.398*y - 2*g1^10*t^6.713*y + 2*g1^6*t^7.028*y + g1^2*t^7.343*y + 2*g1^20*t^7.425*y + g1^16*t^7.74*y + (2*t^7.972*y)/g1^6 + g1^12*t^8.055*y + (2*t^8.287*y)/g1^10 + 5*g1^8*t^8.37*y - g1^26*t^8.453*y + (3*t^8.602*y)/g1^14 + 6*g1^4*t^8.685*y - 2*g1^22*t^8.768*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
868 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ 0.5762 0.7294 0.79 [M:[0.7029, 1.099, 0.8019, 1.099, 1.099], q:[0.7748, 0.5223], qb:[0.6757, 0.2252], phi:[0.4505]] t^2.109 + t^2.243 + t^2.406 + t^3. + 3*t^3.297 + t^3.594 + t^4.054 + t^4.217 + 2*t^4.351 + 2*t^4.486 + t^4.514 + t^4.812 + t^4.946 + t^5.243 + 5*t^5.406 + 2*t^5.54 + 3*t^5.703 + t^5.837 - 3*t^6. - t^4.351/y - t^4.351*y detail