Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1280 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{4}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ 0.723 0.8948 0.8079 [M:[0.9286, 1.0714, 0.7859, 1.0, 0.9286, 0.8572], q:[0.5, 0.5714], qb:[0.4286, 0.6428], phi:[0.4643]] [M:[[-2], [2], [-6], [0], [-2], [-4]], q:[[0], [2]], qb:[[-2], [4]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$ ${}M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$ 0 t^2.358 + t^2.572 + 3*t^2.786 + t^3. + t^3.214 + t^3.965 + t^4.179 + 2*t^4.393 + 2*t^4.607 + t^4.715 + 2*t^4.821 + t^4.929 + t^5.035 + 4*t^5.143 + t^5.249 + 3*t^5.358 + 6*t^5.572 + t^5.786 - 2*t^6.214 + t^6.322 - 2*t^6.428 + 2*t^6.536 - t^6.642 + 5*t^6.751 + 6*t^6.965 + t^7.073 + 7*t^7.179 + t^7.287 + 6*t^7.393 + 4*t^7.501 + 4*t^7.607 + 4*t^7.715 + t^7.821 + 9*t^7.929 + 5*t^8.143 - t^8.249 + 7*t^8.358 - t^8.464 - 2*t^8.572 + t^8.68 - 5*t^8.786 + 2*t^8.894 - t^4.393/y - t^6.751/y - t^6.965/y - (2*t^7.179)/y + (2*t^7.607)/y + t^7.821/y + t^7.929/y + t^8.035/y + (3*t^8.143)/y + (4*t^8.358)/y + (5*t^8.572)/y + (4*t^8.786)/y - t^4.393*y - t^6.751*y - t^6.965*y - 2*t^7.179*y + 2*t^7.607*y + t^7.821*y + t^7.929*y + t^8.035*y + 3*t^8.143*y + 4*t^8.358*y + 5*t^8.572*y + 4*t^8.786*y t^2.358/g1^6 + t^2.572/g1^4 + (3*t^2.786)/g1^2 + t^3. + g1^2*t^3.214 + t^3.965/g1^5 + t^4.179/g1^3 + (2*t^4.393)/g1 + 2*g1*t^4.607 + t^4.715/g1^12 + 2*g1^3*t^4.821 + t^4.929/g1^10 + g1^5*t^5.035 + (4*t^5.143)/g1^8 + g1^7*t^5.249 + (3*t^5.358)/g1^6 + (6*t^5.572)/g1^4 + t^5.786/g1^2 - 2*g1^2*t^6.214 + t^6.322/g1^11 - 2*g1^4*t^6.428 + (2*t^6.536)/g1^9 - g1^6*t^6.642 + (5*t^6.751)/g1^7 + (6*t^6.965)/g1^5 + t^7.073/g1^18 + (7*t^7.179)/g1^3 + t^7.287/g1^16 + (6*t^7.393)/g1 + (4*t^7.501)/g1^14 + 4*g1*t^7.607 + (4*t^7.715)/g1^12 + g1^3*t^7.821 + (9*t^7.929)/g1^10 + (5*t^8.143)/g1^8 - g1^7*t^8.249 + (7*t^8.358)/g1^6 - g1^9*t^8.464 - (2*t^8.572)/g1^4 + t^8.68/g1^17 - (5*t^8.786)/g1^2 + (2*t^8.894)/g1^15 - t^4.393/(g1*y) - t^6.751/(g1^7*y) - t^6.965/(g1^5*y) - (2*t^7.179)/(g1^3*y) + (2*g1*t^7.607)/y + (g1^3*t^7.821)/y + t^7.929/(g1^10*y) + (g1^5*t^8.035)/y + (3*t^8.143)/(g1^8*y) + (4*t^8.358)/(g1^6*y) + (5*t^8.572)/(g1^4*y) + (4*t^8.786)/(g1^2*y) - (t^4.393*y)/g1 - (t^6.751*y)/g1^7 - (t^6.965*y)/g1^5 - (2*t^7.179*y)/g1^3 + 2*g1*t^7.607*y + g1^3*t^7.821*y + (t^7.929*y)/g1^10 + g1^5*t^8.035*y + (3*t^8.143*y)/g1^8 + (4*t^8.358*y)/g1^6 + (5*t^8.572*y)/g1^4 + (4*t^8.786*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2316 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{4}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{2}M_{7}$ 0.7299 0.9081 0.8038 [M:[0.922, 1.078, 0.7659, 1.0, 0.922, 0.8439, 0.922], q:[0.5, 0.578], qb:[0.422, 0.6561], phi:[0.461]] t^2.298 + t^2.532 + 4*t^2.766 + t^3. + t^3.915 + t^4.149 + 2*t^4.383 + t^4.595 + 2*t^4.617 + t^4.83 + 2*t^4.851 + 5*t^5.064 + t^5.085 + 4*t^5.298 + t^5.319 + 9*t^5.532 + t^5.766 - 3*t^6. - t^4.383/y - t^4.383*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
801 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{4}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7674 0.9598 0.7995 [M:[0.8347, 0.8347, 0.8347, 1.0, 0.8347, 0.6694], q:[0.6653, 0.5], qb:[0.5, 0.6653], phi:[0.4174]] t^2.008 + 5*t^2.504 + t^3. + t^4.017 + 3*t^4.252 + 5*t^4.512 + 4*t^4.748 + 16*t^5.008 + 3*t^5.244 + t^5.504 - 7*t^6. - t^4.252/y - t^4.252*y detail