Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1276 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_4^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_2^2$ + $ M_3M_6$ 0.7125 0.866 0.8228 [X:[], M:[0.9101, 1.0, 0.8202, 1.0, 0.9101, 1.1798], q:[0.5449, 0.5449], qb:[0.4551, 0.6348], phi:[0.4551]] [X:[], M:[[-2], [0], [-4], [0], [-2], [4]], q:[[1], [1]], qb:[[-1], [3]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_5$, $ \phi_1^2$, $ M_2$, $ M_4$, $ M_6$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_1M_5$, $ M_5^2$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_1M_2$, $ M_1M_4$, $ M_2M_5$, $ M_4M_5$, $ M_2\phi_1^2$, $ M_4\phi_1^2$ $M_2M_4$ -3 3*t^2.73 + 2*t^3. + 2*t^3.54 + t^4.1 + 2*t^4.37 + 4*t^4.63 + 2*t^4.9 + t^5.17 + 5*t^5.46 + 2*t^5.73 - 3*t^6. + 2*t^6.27 + 2*t^6.54 + 2*t^6.83 + 3*t^7.08 + 4*t^7.1 + 9*t^7.37 + 6*t^7.63 + t^7.9 + 4*t^8.17 + 9*t^8.19 + 2*t^8.44 + 2*t^8.46 + 2*t^8.71 - 8*t^8.73 - t^4.37/y - (3*t^7.1)/y + (3*t^7.63)/y + (3*t^8.46)/y + (6*t^8.73)/y - t^4.37*y - 3*t^7.1*y + 3*t^7.63*y + 3*t^8.46*y + 6*t^8.73*y (3*t^2.73)/g1^2 + 2*t^3. + 2*g1^4*t^3.54 + t^4.1/g1^3 + (2*t^4.37)/g1 + 4*g1*t^4.63 + 2*g1^3*t^4.9 + g1^5*t^5.17 + (5*t^5.46)/g1^4 + (2*t^5.73)/g1^2 - 3*t^6. + 2*g1^2*t^6.27 + 2*g1^4*t^6.54 + (2*t^6.83)/g1^5 + 3*g1^8*t^7.08 + (4*t^7.1)/g1^3 + (9*t^7.37)/g1 + 6*g1*t^7.63 + g1^3*t^7.9 + 4*g1^5*t^8.17 + (9*t^8.19)/g1^6 + 2*g1^7*t^8.44 + (2*t^8.46)/g1^4 + 2*g1^9*t^8.71 - (8*t^8.73)/g1^2 - t^4.37/(g1*y) - (3*t^7.1)/(g1^3*y) + (3*g1*t^7.63)/y + (3*t^8.46)/(g1^4*y) + (6*t^8.73)/(g1^2*y) - (t^4.37*y)/g1 - (3*t^7.1*y)/g1^3 + 3*g1*t^7.63*y + (3*t^8.46*y)/g1^4 + (6*t^8.73*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
798 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_4^2$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_2^2$ 0.7292 0.8958 0.814 [X:[], M:[0.8889, 1.0, 0.7778, 1.0, 0.8889], q:[0.5556, 0.5556], qb:[0.4444, 0.6667], phi:[0.4444]] t^2.33 + 3*t^2.67 + 2*t^3. + t^3.67 + t^4. + 2*t^4.33 + 5*t^4.67 + 5*t^5. + 8*t^5.33 + 2*t^5.67 - 2*t^6. - t^4.33/y - t^4.33*y detail {a: 35/48, c: 43/48, M1: 8/9, M2: 1, M3: 7/9, M4: 1, M5: 8/9, q1: 5/9, q2: 5/9, qb1: 4/9, qb2: 2/3, phi1: 4/9}