Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
122 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ | 0.669 | 0.8356 | 0.8006 | [X:[], M:[0.6922, 0.6922, 0.7], q:[0.8367, 0.8133], qb:[0.4711, 0.4789], phi:[0.35]] | [X:[], M:[[1, -4, -1], [0, 1, -5], [0, -2, -2]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ M_2M_3$, $ M_2\phi_1^2$, $ M_1M_3$, $ M_1\phi_1^2$, $ M_3^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2q_2\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ M_2\phi_1\tilde{q}_1^2$, $ M_3q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1^2$, $ M_2q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1^2$, $ M_3q_2\tilde{q}_2$ | . | -3 | 2*t^2.08 + 2*t^2.1 + t^2.85 + t^3.85 + 2*t^3.88 + t^3.95 + 3*t^4.15 + 4*t^4.18 + 3*t^4.2 + 2*t^4.93 + 3*t^4.95 + t^5.7 + 2*t^5.93 + 5*t^5.95 + 2*t^5.98 - 3*t^6. + t^6.05 + 4*t^6.23 + 6*t^6.25 + 6*t^6.28 + 4*t^6.3 + t^6.7 + 2*t^6.73 + t^6.8 + 2*t^7. + 4*t^7.03 + 3*t^7.05 - 2*t^7.07 - t^7.1 + t^7.71 + 2*t^7.73 + 2*t^7.75 + t^7.8 - t^7.85 + t^7.89 + 3*t^8.01 + 8*t^8.03 + 5*t^8.05 - 4*t^8.08 - 6*t^8.1 - 2*t^8.12 + t^8.15 + 5*t^8.31 + 8*t^8.33 + 9*t^8.35 + 8*t^8.38 + 5*t^8.4 + t^8.55 + 2*t^8.78 + 5*t^8.8 + 2*t^8.83 - 5*t^8.85 - 2*t^8.87 + t^8.9 - t^4.05/y - (2*t^6.13)/y - (2*t^6.15)/y + t^7.15/y + (4*t^7.18)/y + t^7.2/y + (2*t^7.93)/y + (4*t^7.95)/y + (2*t^7.97)/y - (3*t^8.2)/y - (4*t^8.23)/y - (3*t^8.25)/y + (2*t^8.93)/y + (6*t^8.95)/y + (4*t^8.98)/y - t^4.05*y - 2*t^6.13*y - 2*t^6.15*y + t^7.15*y + 4*t^7.18*y + t^7.2*y + 2*t^7.93*y + 4*t^7.95*y + 2*t^7.97*y - 3*t^8.2*y - 4*t^8.23*y - 3*t^8.25*y + 2*t^8.93*y + 6*t^8.95*y + 4*t^8.98*y | (g2*t^2.08)/g3^5 + (g1*t^2.08)/(g2^4*g3) + (2*t^2.1)/(g2^2*g3^2) + g2^3*g3^3*t^2.85 + g1*g2^3*t^3.85 + (g2^5*t^3.88)/g3 + g1*g3^3*t^3.88 + (g2*g3^4*t^3.95)/g1 + (g2^2*t^4.15)/g3^10 + (g1*t^4.15)/(g2^3*g3^6) + (g1^2*t^4.15)/(g2^8*g3^2) + (2*t^4.18)/(g2*g3^7) + (2*g1*t^4.18)/(g2^6*g3^3) + (3*t^4.2)/(g2^4*g3^4) + (g2^4*t^4.93)/g3^2 + (g1*g3^2*t^4.93)/g2 + 3*g2*g3*t^4.95 + g2^6*g3^6*t^5.7 + (g1*g2^4*t^5.93)/g3^5 + (g1^2*t^5.93)/(g2*g3) + (g2^6*t^5.95)/g3^6 + (3*g1*g2*t^5.95)/g3^2 + (g1^2*g3^2*t^5.95)/g2^4 + (g2^3*t^5.98)/g3^3 + (g1*g3*t^5.98)/g2^2 - 3*t^6. + (g3^2*t^6.05)/(g1*g2) + (g2^3*t^6.23)/g3^15 + (g1*t^6.23)/(g2^2*g3^11) + (g1^2*t^6.23)/(g2^7*g3^7) + (g1^3*t^6.23)/(g2^12*g3^3) + (2*t^6.25)/g3^12 + (2*g1*t^6.25)/(g2^5*g3^8) + (2*g1^2*t^6.25)/(g2^10*g3^4) + (3*t^6.28)/(g2^3*g3^9) + (3*g1*t^6.28)/(g2^8*g3^5) + (4*t^6.3)/(g2^6*g3^6) + g1*g2^6*g3^3*t^6.7 + g2^8*g3^2*t^6.73 + g1*g2^3*g3^6*t^6.73 + (g2^4*g3^7*t^6.8)/g1 + (g2^5*t^7.)/g3^7 + (g1^2*g3*t^7.)/g2^5 + (2*g1*t^7.03)/g2^3 + (2*g2^2*t^7.03)/g3^4 + (3*t^7.05)/(g2*g3) - (g2*t^7.07)/(g1*g3^2) - (g3^2*t^7.07)/g2^4 - (g3*t^7.1)/(g1*g2^2) + g1^2*g2^6*t^7.71 + (g1*g2^8*t^7.73)/g3 + g1^2*g2^3*g3^3*t^7.73 + (g2^10*t^7.75)/g3^2 + g1^2*g3^6*t^7.75 + g2^4*g3^4*t^7.8 - (g2^3*g3^6*t^7.85)/g1 + (g2^2*g3^8*t^7.89)/g1^2 + (g1*g2^5*t^8.01)/g3^10 + (g1^2*t^8.01)/g3^6 + (g1^3*t^8.01)/(g2^5*g3^2) + (g2^7*t^8.03)/g3^11 + (3*g1*g2^2*t^8.03)/g3^7 + (3*g1^2*t^8.03)/(g2^3*g3^3) + (g1^3*g3*t^8.03)/g2^8 + (g1^2*t^8.05)/g2^6 + (g2^4*t^8.05)/g3^8 + (3*g1*t^8.05)/(g2*g3^4) - (2*g2*t^8.08)/g3^5 - (2*g1*t^8.08)/(g2^4*g3) - (6*t^8.1)/(g2^2*g3^2) - t^8.12/(g1*g3^3) - (g3*t^8.12)/g2^5 + t^8.15/(g1*g2^3) + (g2^4*t^8.31)/g3^20 + (g1*t^8.31)/(g2*g3^16) + (g1^2*t^8.31)/(g2^6*g3^12) + (g1^3*t^8.31)/(g2^11*g3^8) + (g1^4*t^8.31)/(g2^16*g3^4) + (2*g2*t^8.33)/g3^17 + (2*g1*t^8.33)/(g2^4*g3^13) + (2*g1^2*t^8.33)/(g2^9*g3^9) + (2*g1^3*t^8.33)/(g2^14*g3^5) + (3*t^8.35)/(g2^2*g3^14) + (3*g1*t^8.35)/(g2^7*g3^10) + (3*g1^2*t^8.35)/(g2^12*g3^6) + (4*t^8.38)/(g2^5*g3^11) + (4*g1*t^8.38)/(g2^10*g3^7) + (5*t^8.4)/(g2^8*g3^8) + g2^9*g3^9*t^8.55 + (g1*g2^7*t^8.78)/g3^2 + g1^2*g2^2*g3^2*t^8.78 + (g2^9*t^8.8)/g3^3 + 3*g1*g2^4*g3*t^8.8 + (g1^2*g3^5*t^8.8)/g2 + g2^6*t^8.83 + g1*g2*g3^4*t^8.83 - 5*g2^3*g3^3*t^8.85 - (g2^5*g3^2*t^8.87)/g1 - g3^6*t^8.87 + (g2^2*g3^5*t^8.9)/g1 - t^4.05/(g2*g3*y) - t^6.13/(g3^6*y) - (g1*t^6.13)/(g2^5*g3^2*y) - (2*t^6.15)/(g2^3*g3^3*y) + (g1*t^7.15)/(g2^3*g3^6*y) + (2*t^7.18)/(g2*g3^7*y) + (2*g1*t^7.18)/(g2^6*g3^3*y) + t^7.2/(g2^4*g3^4*y) + (g2^4*t^7.93)/(g3^2*y) + (g1*g3^2*t^7.93)/(g2*y) + (4*g2*g3*t^7.95)/y + (g2^3*t^7.97)/(g1*y) + (g3^4*t^7.97)/(g2^2*y) - (g2*t^8.2)/(g3^11*y) - (g1*t^8.2)/(g2^4*g3^7*y) - (g1^2*t^8.2)/(g2^9*g3^3*y) - (2*t^8.23)/(g2^2*g3^8*y) - (2*g1*t^8.23)/(g2^7*g3^4*y) - (3*t^8.25)/(g2^5*g3^5*y) + (g1*g2^4*t^8.93)/(g3^5*y) + (g1^2*t^8.93)/(g2*g3*y) + (g2^6*t^8.95)/(g3^6*y) + (4*g1*g2*t^8.95)/(g3^2*y) + (g1^2*g3^2*t^8.95)/(g2^4*y) + (2*g2^3*t^8.98)/(g3^3*y) + (2*g1*g3*t^8.98)/(g2^2*y) - (t^4.05*y)/(g2*g3) - (t^6.13*y)/g3^6 - (g1*t^6.13*y)/(g2^5*g3^2) - (2*t^6.15*y)/(g2^3*g3^3) + (g1*t^7.15*y)/(g2^3*g3^6) + (2*t^7.18*y)/(g2*g3^7) + (2*g1*t^7.18*y)/(g2^6*g3^3) + (t^7.2*y)/(g2^4*g3^4) + (g2^4*t^7.93*y)/g3^2 + (g1*g3^2*t^7.93*y)/g2 + 4*g2*g3*t^7.95*y + (g2^3*t^7.97*y)/g1 + (g3^4*t^7.97*y)/g2^2 - (g2*t^8.2*y)/g3^11 - (g1*t^8.2*y)/(g2^4*g3^7) - (g1^2*t^8.2*y)/(g2^9*g3^3) - (2*t^8.23*y)/(g2^2*g3^8) - (2*g1*t^8.23*y)/(g2^7*g3^4) - (3*t^8.25*y)/(g2^5*g3^5) + (g1*g2^4*t^8.93*y)/g3^5 + (g1^2*t^8.93*y)/(g2*g3) + (g2^6*t^8.95*y)/g3^6 + (4*g1*g2*t^8.95*y)/g3^2 + (g1^2*g3^2*t^8.95*y)/g2^4 + (2*g2^3*t^8.98*y)/g3^3 + (2*g1*g3*t^8.98*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
76 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ | 0.6485 | 0.7967 | 0.8141 | [X:[], M:[0.696, 0.696], q:[0.837, 0.8106], qb:[0.467, 0.4758], phi:[0.3524]] | 2*t^2.09 + t^2.11 + t^2.83 + t^3.83 + 2*t^3.86 + t^3.89 + t^3.94 + 3*t^4.18 + 2*t^4.2 + t^4.23 + 2*t^4.92 + 2*t^4.94 + t^5.66 + 2*t^5.92 + 4*t^5.95 + 2*t^5.97 - 2*t^6. - t^4.06/y - t^4.06*y | detail |