Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1209 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{6}$ 0.6301 0.7812 0.8066 [M:[1.2032, 0.8075, 0.7968, 0.7968, 0.7914, 1.1925], q:[0.7995, 0.393], qb:[0.4038, 0.7995], phi:[0.4011]] [M:[[-6], [-14], [6], [6], [16], [14]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0 t^2.374 + 2*t^2.39 + t^2.406 + t^3.561 + 2*t^3.577 + t^3.594 + t^3.61 + t^4.748 + 2*t^4.764 + 4*t^4.781 + 3*t^4.797 + t^4.813 + t^5.935 + 4*t^5.952 + 5*t^5.968 + 3*t^5.984 - t^6.016 - t^6.032 + 2*t^7.122 + 4*t^7.139 + 7*t^7.155 + 7*t^7.171 + 4*t^7.187 - t^7.219 - t^7.236 + t^8.31 + 4*t^8.326 + 8*t^8.342 + 9*t^8.358 + 3*t^8.374 - 3*t^8.39 - 5*t^8.406 - 4*t^8.423 - t^8.439 - t^4.203/y - t^6.577/y - t^6.594/y - t^6.61/y + (2*t^7.764)/y + (2*t^7.781)/y + (3*t^7.797)/y + t^7.813/y + t^7.829/y + t^8.935/y + (3*t^8.952)/y + (5*t^8.968)/y + (3*t^8.984)/y - t^4.203*y - t^6.577*y - t^6.594*y - t^6.61*y + 2*t^7.764*y + 2*t^7.781*y + 3*t^7.797*y + t^7.813*y + t^7.829*y + t^8.935*y + 3*t^8.952*y + 5*t^8.968*y + 3*t^8.984*y g1^16*t^2.374 + 2*g1^6*t^2.39 + t^2.406/g1^4 + g1^24*t^3.561 + 2*g1^14*t^3.577 + g1^4*t^3.594 + t^3.61/g1^6 + g1^32*t^4.748 + 2*g1^22*t^4.764 + 4*g1^12*t^4.781 + 3*g1^2*t^4.797 + t^4.813/g1^8 + g1^40*t^5.935 + 4*g1^30*t^5.952 + 5*g1^20*t^5.968 + 3*g1^10*t^5.984 - t^6.016/g1^10 - t^6.032/g1^20 + 2*g1^48*t^7.122 + 4*g1^38*t^7.139 + 7*g1^28*t^7.155 + 7*g1^18*t^7.171 + 4*g1^8*t^7.187 - t^7.219/g1^12 - t^7.236/g1^22 + g1^56*t^8.31 + 4*g1^46*t^8.326 + 8*g1^36*t^8.342 + 9*g1^26*t^8.358 + 3*g1^16*t^8.374 - 3*g1^6*t^8.39 - (5*t^8.406)/g1^4 - (4*t^8.423)/g1^14 - t^8.439/g1^24 - t^4.203/(g1^2*y) - (g1^14*t^6.577)/y - (g1^4*t^6.594)/y - t^6.61/(g1^6*y) + (2*g1^22*t^7.764)/y + (2*g1^12*t^7.781)/y + (3*g1^2*t^7.797)/y + t^7.813/(g1^8*y) + t^7.829/(g1^18*y) + (g1^40*t^8.935)/y + (3*g1^30*t^8.952)/y + (5*g1^20*t^8.968)/y + (3*g1^10*t^8.984)/y - (t^4.203*y)/g1^2 - g1^14*t^6.577*y - g1^4*t^6.594*y - (t^6.61*y)/g1^6 + 2*g1^22*t^7.764*y + 2*g1^12*t^7.781*y + 3*g1^2*t^7.797*y + (t^7.813*y)/g1^8 + (t^7.829*y)/g1^18 + g1^40*t^8.935*y + 3*g1^30*t^8.952*y + 5*g1^20*t^8.968*y + 3*g1^10*t^8.984*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2264 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{1}M_{7}$ 0.6469 0.8121 0.7965 [M:[1.2069, 0.8161, 0.7931, 0.7931, 0.7816, 1.1839, 0.7931], q:[0.7988, 0.385], qb:[0.4081, 0.7988], phi:[0.4023]] t^2.345 + 3*t^2.379 + t^2.414 + t^3.517 + 2*t^3.552 + t^3.586 + t^4.69 + 3*t^4.724 + 7*t^4.759 + 4*t^4.793 + t^4.828 + t^5.862 + 5*t^5.896 + 7*t^5.931 + 3*t^5.965 - 2*t^6. - t^4.207/y - t^4.207*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
737 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ 0.6467 0.8082 0.8002 [M:[1.1947, 0.7877, 0.8053, 0.8053, 0.814], q:[0.8009, 0.4114], qb:[0.3939, 0.8009], phi:[0.3982]] t^2.363 + t^2.389 + 2*t^2.416 + t^2.442 + t^3.584 + t^3.611 + t^3.637 + t^3.663 + t^4.726 + t^4.753 + 3*t^4.779 + 4*t^4.805 + 4*t^4.832 + 2*t^4.858 + t^4.884 + t^6. - t^4.195/y - t^4.195*y detail