Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
117 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ 0.5336 0.6056 0.881 [X:[1.4237], M:[0.8645], q:[0.5678, 1.1441], qb:[0.5678, 0.5678], phi:[0.2882]] [X:[[4]], M:[[-6]], q:[[3], [-1]], qb:[[3], [3]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ X_1$, $ q_1q_2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_1^2$ . -5 t^2.59 + 2*t^3.41 + 4*t^4.27 + t^5.14 + t^5.19 - 5*t^6. + 3*t^6.81 - 2*t^6.86 + 6*t^7.68 + 2*t^7.73 + t^7.78 + 5*t^8.54 - t^8.59 - t^3.86/y - t^6.46/y + t^7.27/y - t^3.86*y - t^6.46*y + t^7.27*y t^2.59/g1^6 + 2*g1^6*t^3.41 + 4*g1^4*t^4.27 + g1^2*t^5.14 + t^5.19/g1^12 - 5*t^6. + 3*g1^12*t^6.81 - (2*t^6.86)/g1^2 + 6*g1^10*t^7.68 + (2*t^7.73)/g1^4 + t^7.78/g1^18 + 5*g1^8*t^8.54 - t^8.59/g1^6 - t^3.86/(g1^2*y) - t^6.46/(g1^8*y) + (g1^4*t^7.27)/y - (t^3.86*y)/g1^2 - (t^6.46*y)/g1^8 + g1^4*t^7.27*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
182 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ + $ M_1M_2$ 0.5241 0.5971 0.8778 [X:[1.3807], M:[0.9289, 1.0711], q:[0.5355, 1.1548], qb:[0.5355, 0.5355], phi:[0.3096]] 3*t^3.21 + 4*t^4.14 + t^5.07 - 7*t^6. - t^3.93/y - t^3.93*y detail
183 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ + $ M_2q_1\tilde{q}_2$ 0.5474 0.627 0.8731 [X:[1.4551], M:[0.8174, 0.8174], q:[0.5913, 1.1362], qb:[0.5913, 0.5913], phi:[0.2725]] 2*t^2.45 + t^3.55 + 4*t^4.37 + 3*t^4.9 + t^5.18 - 5*t^6. - t^3.82/y - t^3.82*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
75 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1^3\tilde{q}_2^2$ 0.6281 0.758 0.8286 [X:[], M:[0.6967], q:[0.8359, 0.809], qb:[0.4674, 0.4674], phi:[0.3551]] t^2.09 + t^2.13 + t^2.8 + 2*t^3.83 + 3*t^3.87 + t^3.91 + t^4.18 + t^4.22 + t^4.26 + t^4.89 + 2*t^4.93 + t^5.61 + 2*t^5.92 + 3*t^5.96 - t^6. - t^4.07/y - t^4.07*y detail