Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1151 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1q_2^2$ + $ M_7\phi_1\tilde{q}_2^2$ | 0.7198 | 0.9136 | 0.7879 | [X:[], M:[0.9767, 1.1243, 0.9642, 0.7748, 0.8757, 0.6989, 0.6738], q:[0.7811, 0.4316], qb:[0.5917, 0.4441], phi:[0.4379]] | [X:[], M:[[-7, 1], [4, 0], [-11, -1], [-1, -1], [-4, 0], [10, 2], [2, -2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_6$, $ M_4$, $ M_5$, $ \phi_1^2$, $ M_3$, $ M_1$, $ q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_6M_7$, $ q_1\tilde{q}_1$, $ M_6^2$, $ M_4M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_5M_7$, $ M_7\phi_1^2$, $ M_5M_6$, $ M_6\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_3M_7$, $ M_4M_5$, $ M_1M_7$, $ M_4\phi_1^2$, $ M_3M_6$, $ M_1M_6$, $ M_3M_4$, $ M_1M_4$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_7q_1q_2$, $ M_6q_1q_2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_4q_1q_2$, $ M_7\phi_1q_2\tilde{q}_2$ | . | -3 | t^2.02 + t^2.1 + t^2.32 + 2*t^2.63 + t^2.89 + t^2.93 + t^3.64 + t^3.94 + t^4.04 + 2*t^4.12 + t^4.19 + t^4.35 + t^4.38 + 2*t^4.42 + 3*t^4.65 + 2*t^4.72 + t^4.86 + t^4.91 + 3*t^4.95 + t^4.99 + t^5.03 + t^5.22 + 4*t^5.25 + t^5.52 + t^5.56 + t^5.66 + t^5.73 + t^5.78 + t^5.82 + t^5.86 + t^5.96 - 3*t^6. + t^6.06 + 2*t^6.14 + 2*t^6.22 + 2*t^6.27 + t^6.29 - t^6.3 + t^6.37 + t^6.41 + 2*t^6.44 + 2*t^6.52 + t^6.53 + 2*t^6.57 + 3*t^6.67 + t^6.71 + 4*t^6.75 + 2*t^6.82 + t^6.89 + t^6.94 + t^6.96 + 4*t^6.97 + 2*t^7.01 + 4*t^7.05 + t^7.09 + t^7.12 + t^7.19 + t^7.24 + 6*t^7.28 + 3*t^7.35 + t^7.49 + 2*t^7.54 + 5*t^7.58 + t^7.65 + t^7.68 + t^7.76 - t^7.79 + t^7.81 + t^7.83 + 2*t^7.84 + 7*t^7.88 + t^7.92 + t^7.96 + t^7.98 - 3*t^8.02 + t^8.09 - 4*t^8.1 + t^8.11 + 2*t^8.15 + 2*t^8.16 + 2*t^8.18 + 2*t^8.24 + 2*t^8.29 + 2*t^8.31 - 5*t^8.32 + 2*t^8.39 - t^8.4 + t^8.41 + t^8.43 + t^8.45 + 2*t^8.46 + t^8.49 + t^8.5 + 2*t^8.54 + t^8.55 + 2*t^8.59 + 2*t^8.61 - 6*t^8.63 + t^8.68 + 3*t^8.69 + t^8.71 + t^8.73 + t^8.75 + 4*t^8.77 + t^8.79 + 4*t^8.84 + t^8.91 + 2*t^8.92 - 5*t^8.93 + t^8.96 - t^8.97 + 2*t^8.98 + 4*t^8.99 - t^4.31/y - t^6.34/y - t^6.41/y - t^6.64/y - t^6.94/y + t^7.12/y - t^7.21/y - t^7.24/y + t^7.35/y + t^7.38/y + (2*t^7.42)/y + (2*t^7.65)/y + t^7.69/y + (2*t^7.72)/y + t^7.91/y + (3*t^7.95)/y + (2*t^7.99)/y + t^8.03/y + (2*t^8.22)/y + (2*t^8.25)/y + t^8.29/y - t^8.36/y - t^8.43/y - t^8.51/y + (2*t^8.52)/y + (2*t^8.56)/y + t^8.82/y - t^4.31*y - t^6.34*y - t^6.41*y - t^6.64*y - t^6.94*y + t^7.12*y - t^7.21*y - t^7.24*y + t^7.35*y + t^7.38*y + 2*t^7.42*y + 2*t^7.65*y + t^7.69*y + 2*t^7.72*y + t^7.91*y + 3*t^7.95*y + 2*t^7.99*y + t^8.03*y + 2*t^8.22*y + 2*t^8.25*y + t^8.29*y - t^8.36*y - t^8.43*y - t^8.51*y + 2*t^8.52*y + 2*t^8.56*y + t^8.82*y | (g1^2*t^2.02)/g2^2 + g1^10*g2^2*t^2.1 + t^2.32/(g1*g2) + (2*t^2.63)/g1^4 + t^2.89/(g1^11*g2) + (g2*t^2.93)/g1^7 + t^3.64/(g1^3*g2) + t^3.94/g1^6 + (g1^4*t^4.04)/g2^4 + 2*g1^12*t^4.12 + g1^20*g2^4*t^4.19 + (g1*t^4.35)/g2^3 + (g1^5*t^4.38)/g2 + 2*g1^9*g2*t^4.42 + (3*t^4.65)/(g1^2*g2^2) + 2*g1^6*g2^2*t^4.72 + g1^20*t^4.86 + t^4.91/(g1^9*g2^3) + (3*t^4.95)/(g1^5*g2) + (g2*t^4.99)/g1 + g1^3*g2^3*t^5.03 + t^5.22/(g1^12*g2^2) + (4*t^5.25)/g1^8 + t^5.52/(g1^15*g2) + (g2*t^5.56)/g1^11 + t^5.66/(g1*g2^3) + g1^7*g2*t^5.73 + t^5.78/(g1^22*g2^2) + t^5.82/g1^18 + (g2^2*t^5.86)/g1^14 + t^5.96/(g1^4*g2^2) - 3*t^6. + (g1^6*t^6.06)/g2^6 + (2*g1^14*t^6.14)/g2^2 + 2*g1^22*g2^2*t^6.22 + (2*t^6.27)/(g1^7*g2) + g1^30*g2^6*t^6.29 - (g2*t^6.3)/g1^3 + (g1^3*t^6.37)/g2^5 + (g1^7*t^6.41)/g2^3 + (2*g1^11*t^6.44)/g2 + 2*g1^19*g2^3*t^6.52 + t^6.53/(g1^14*g2^2) + (2*t^6.57)/g1^10 + (3*t^6.67)/g2^4 + (g1^4*t^6.71)/g2^2 + 4*g1^8*t^6.75 + 2*g1^16*g2^4*t^6.82 + (g1^22*t^6.89)/g2^2 + t^6.94/(g1^7*g2^5) + g1^30*g2^2*t^6.96 + (4*t^6.97)/(g1^3*g2^3) + (2*g1*t^7.01)/g2 + 4*g1^5*g2*t^7.05 + g1^9*g2^3*t^7.09 + g1^13*g2^5*t^7.12 + (g1^19*t^7.19)/g2 + t^7.24/(g1^10*g2^4) + (6*t^7.28)/(g1^6*g2^2) + 3*g1^2*g2^2*t^7.35 + g1^16*t^7.49 + (2*t^7.54)/(g1^13*g2^3) + (5*t^7.58)/(g1^9*g2) + (g2^3*t^7.65)/g1 + (g1*t^7.68)/g2^5 + (g1^9*t^7.76)/g2 - g1^13*g2*t^7.79 + t^7.81/(g1^20*g2^4) + g1^17*g2^3*t^7.83 + (2*t^7.84)/(g1^16*g2^2) + (7*t^7.88)/g1^12 + (g2^2*t^7.92)/g1^8 + (g2^4*t^7.96)/g1^4 + t^7.98/(g1^2*g2^4) - (3*g1^2*t^8.02)/g2^2 + (g1^8*t^8.09)/g2^8 - 4*g1^10*g2^2*t^8.1 + t^8.11/(g1^23*g2^3) + (2*t^8.15)/(g1^19*g2) + (2*g1^16*t^8.16)/g2^4 + (2*g2*t^8.18)/g1^15 + 2*g1^24*t^8.24 + (2*t^8.29)/(g1^5*g2^3) + 2*g1^32*g2^4*t^8.31 - (5*t^8.32)/(g1*g2) + (g1^5*t^8.39)/g2^7 + g1^40*g2^8*t^8.39 - g1^7*g2^3*t^8.4 + t^8.41/(g1^26*g2^2) + (g1^9*t^8.43)/g2^5 + t^8.45/g1^22 + (2*g1^13*t^8.46)/g2^3 + (g2^2*t^8.49)/g1^18 + (g1^17*t^8.5)/g2 + 2*g1^21*g2*t^8.54 + t^8.55/(g1^12*g2^4) + (2*t^8.59)/(g1^8*g2^2) + 2*g1^29*g2^5*t^8.61 - (6*t^8.63)/g1^4 + t^8.68/(g1^33*g2^3) + (3*g1^2*t^8.69)/g2^6 + t^8.71/(g1^29*g2) + (g1^6*t^8.73)/g2^4 + (g2*t^8.75)/g1^25 + (4*g1^10*t^8.77)/g2^2 + (g2^3*t^8.79)/g1^21 + 4*g1^18*g2^2*t^8.84 + (g1^24*t^8.91)/g2^4 + 2*g1^26*g2^6*t^8.92 - (5*g2*t^8.93)/g1^7 + t^8.96/(g1^5*g2^7) - (g2^3*t^8.97)/g1^3 + 2*g1^32*t^8.98 + (4*t^8.99)/(g1*g2^5) - t^4.31/(g1^2*y) - t^6.34/(g2^2*y) - (g1^8*g2^2*t^6.41)/y - t^6.64/(g1^3*g2*y) - t^6.94/(g1^6*y) + (g1^12*t^7.12)/y - t^7.21/(g1^13*g2*y) - (g2*t^7.24)/(g1^9*y) + (g1*t^7.35)/(g2^3*y) + (g1^5*t^7.38)/(g2*y) + (2*g1^9*g2*t^7.42)/y + (2*t^7.65)/(g1^2*g2^2*y) + (g1^2*t^7.69)/y + (2*g1^6*g2^2*t^7.72)/y + t^7.91/(g1^9*g2^3*y) + (3*t^7.95)/(g1^5*g2*y) + (2*g2*t^7.99)/(g1*y) + (g1^3*g2^3*t^8.03)/y + (2*t^8.22)/(g1^12*g2^2*y) + (2*t^8.25)/(g1^8*y) + (g2^2*t^8.29)/(g1^4*y) - (g1^2*t^8.36)/(g2^4*y) - (g1^10*t^8.43)/y - (g1^18*g2^4*t^8.51)/y + (2*t^8.52)/(g1^15*g2*y) + (2*g2*t^8.56)/(g1^11*y) + t^8.82/(g1^18*y) - (t^4.31*y)/g1^2 - (t^6.34*y)/g2^2 - g1^8*g2^2*t^6.41*y - (t^6.64*y)/(g1^3*g2) - (t^6.94*y)/g1^6 + g1^12*t^7.12*y - (t^7.21*y)/(g1^13*g2) - (g2*t^7.24*y)/g1^9 + (g1*t^7.35*y)/g2^3 + (g1^5*t^7.38*y)/g2 + 2*g1^9*g2*t^7.42*y + (2*t^7.65*y)/(g1^2*g2^2) + g1^2*t^7.69*y + 2*g1^6*g2^2*t^7.72*y + (t^7.91*y)/(g1^9*g2^3) + (3*t^7.95*y)/(g1^5*g2) + (2*g2*t^7.99*y)/g1 + g1^3*g2^3*t^8.03*y + (2*t^8.22*y)/(g1^12*g2^2) + (2*t^8.25*y)/g1^8 + (g2^2*t^8.29*y)/g1^4 - (g1^2*t^8.36*y)/g2^4 - g1^10*t^8.43*y - g1^18*g2^4*t^8.51*y + (2*t^8.52*y)/(g1^15*g2) + (2*g2*t^8.56*y)/g1^11 + (t^8.82*y)/g1^18 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
705 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_2M_5$ + $ M_6\phi_1q_2^2$ | 0.699 | 0.8725 | 0.8011 | [X:[], M:[0.974, 1.1248, 0.9642, 0.7763, 0.8752, 0.697], q:[0.7812, 0.4327], qb:[0.5933, 0.4424], phi:[0.4376]] | t^2.09 + t^2.33 + 2*t^2.63 + t^2.89 + t^2.92 + t^3.64 + t^3.94 + t^3.97 + t^4.12 + t^4.18 + t^4.39 + 2*t^4.42 + t^4.66 + 2*t^4.72 + t^4.87 + 2*t^4.95 + t^4.98 + t^5.01 + t^5.22 + 4*t^5.25 + t^5.52 + t^5.55 + t^5.73 + t^5.79 + t^5.81 + t^5.84 - 3*t^6. - t^4.31/y - t^4.31*y | detail |