Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1108 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_5q_1q_2$ + $ M_6\phi_1q_2^2$ 0.7053 0.8853 0.7968 [X:[], M:[1.0, 1.113, 0.9916, 0.774, 0.7825, 0.6779], q:[0.7782, 0.4393], qb:[0.5607, 0.4477], phi:[0.4435]] [X:[], M:[[0], [4], [-18], [-8], [10], [24]], q:[[1], [-11]], qb:[[11], [7]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_5$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_6^2$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_6\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_4\phi_1^2$, $ M_3M_6$, $ M_5\phi_1^2$, $ M_1M_6$, $ M_3M_4$, $ M_1M_4$, $ M_3M_5$, $ \phi_1^4$, $ M_1M_5$, $ M_2M_6$, $ M_2M_4$, $ M_1\phi_1^2$, $ M_2M_5$, $ M_3^2$ . -1 t^2.03 + t^2.32 + t^2.35 + t^2.66 + t^2.97 + t^3. + t^3.34 + t^3.99 + 2*t^4.02 + t^4.07 + t^4.33 + 2*t^4.36 + t^4.38 + t^4.64 + t^4.67 + 3*t^4.69 + t^4.98 + 2*t^5.01 + t^5.03 + t^5.3 + 3*t^5.32 + t^5.35 + t^5.37 + t^5.66 + t^5.69 + t^5.95 - t^6. + 2*t^6.05 + t^6.1 + t^6.31 + 2*t^6.34 + 2*t^6.36 + 2*t^6.39 + t^6.41 + t^6.65 + 4*t^6.68 + 2*t^6.7 + 3*t^6.73 + t^6.97 + 2*t^6.99 + 4*t^7.02 + 4*t^7.04 + t^7.07 + 2*t^7.33 + 5*t^7.36 + t^7.38 + t^7.41 + t^7.62 + 2*t^7.64 + 2*t^7.67 + 2*t^7.69 + t^7.72 + 2*t^7.98 + t^8.01 + 2*t^8.03 + 2*t^8.08 + t^8.13 + t^8.27 + t^8.3 - 2*t^8.32 - t^8.35 + 2*t^8.37 + 2*t^8.4 + 2*t^8.42 + t^8.45 + t^8.69 + 7*t^8.71 + 2*t^8.74 + 3*t^8.76 + t^8.92 - 2*t^8.97 - t^4.33/y - t^6.36/y - t^6.65/y - t^6.68/y - t^7.31/y + (2*t^7.36)/y + t^7.38/y + t^7.67/y + t^7.69/y + (2*t^7.98)/y + (3*t^8.01)/y + t^8.03/y + (2*t^8.3)/y + (2*t^8.32)/y + t^8.35/y + t^8.37/y - t^8.4/y + t^8.64/y + (2*t^8.66)/y - t^8.71/y - t^4.33*y - t^6.36*y - t^6.65*y - t^6.68*y - t^7.31*y + 2*t^7.36*y + t^7.38*y + t^7.67*y + t^7.69*y + 2*t^7.98*y + 3*t^8.01*y + t^8.03*y + 2*t^8.3*y + 2*t^8.32*y + t^8.35*y + t^8.37*y - t^8.4*y + t^8.64*y + 2*t^8.66*y - t^8.71*y g1^24*t^2.03 + t^2.32/g1^8 + g1^10*t^2.35 + t^2.66/g1^4 + t^2.97/g1^18 + t^3. + g1^4*t^3.34 + t^3.99/g1^6 + 2*g1^12*t^4.02 + g1^48*t^4.07 + t^4.33/g1^2 + 2*g1^16*t^4.36 + g1^34*t^4.38 + t^4.64/g1^16 + g1^2*t^4.67 + 3*g1^20*t^4.69 + t^4.98/g1^12 + 2*g1^6*t^5.01 + g1^24*t^5.03 + t^5.3/g1^26 + (3*t^5.32)/g1^8 + g1^10*t^5.35 + g1^28*t^5.37 + t^5.66/g1^4 + g1^14*t^5.69 + t^5.95/g1^36 - t^6. + 2*g1^36*t^6.05 + g1^72*t^6.1 + t^6.31/g1^14 + 2*g1^4*t^6.34 + 2*g1^22*t^6.36 + 2*g1^40*t^6.39 + g1^58*t^6.41 + t^6.65/g1^10 + 4*g1^8*t^6.68 + 2*g1^26*t^6.7 + 3*g1^44*t^6.73 + t^6.97/g1^24 + (2*t^6.99)/g1^6 + 4*g1^12*t^7.02 + 4*g1^30*t^7.04 + g1^48*t^7.07 + (2*t^7.33)/g1^2 + 5*g1^16*t^7.36 + g1^34*t^7.38 + g1^52*t^7.41 + t^7.62/g1^34 + (2*t^7.64)/g1^16 + 2*g1^2*t^7.67 + 2*g1^20*t^7.69 + g1^38*t^7.72 + (2*t^7.98)/g1^12 + g1^6*t^8.01 + 2*g1^24*t^8.03 + 2*g1^60*t^8.08 + g1^96*t^8.13 + t^8.27/g1^44 + t^8.3/g1^26 - (2*t^8.32)/g1^8 - g1^10*t^8.35 + 2*g1^28*t^8.37 + 2*g1^46*t^8.4 + 2*g1^64*t^8.42 + g1^82*t^8.45 + g1^14*t^8.69 + 7*g1^32*t^8.71 + 2*g1^50*t^8.74 + 3*g1^68*t^8.76 + t^8.92/g1^54 - (2*t^8.97)/g1^18 - t^4.33/(g1^2*y) - (g1^22*t^6.36)/y - t^6.65/(g1^10*y) - (g1^8*t^6.68)/y - t^7.31/(g1^20*y) + (2*g1^16*t^7.36)/y + (g1^34*t^7.38)/y + (g1^2*t^7.67)/y + (g1^20*t^7.69)/y + (2*t^7.98)/(g1^12*y) + (3*g1^6*t^8.01)/y + (g1^24*t^8.03)/y + (2*t^8.3)/(g1^26*y) + (2*t^8.32)/(g1^8*y) + (g1^10*t^8.35)/y + (g1^28*t^8.37)/y - (g1^46*t^8.4)/y + t^8.64/(g1^22*y) + (2*t^8.66)/(g1^4*y) - (g1^32*t^8.71)/y - (t^4.33*y)/g1^2 - g1^22*t^6.36*y - (t^6.65*y)/g1^10 - g1^8*t^6.68*y - (t^7.31*y)/g1^20 + 2*g1^16*t^7.36*y + g1^34*t^7.38*y + g1^2*t^7.67*y + g1^20*t^7.69*y + (2*t^7.98*y)/g1^12 + 3*g1^6*t^8.01*y + g1^24*t^8.03*y + (2*t^8.3*y)/g1^26 + (2*t^8.32*y)/g1^8 + g1^10*t^8.35*y + g1^28*t^8.37*y - g1^46*t^8.4*y + (t^8.64*y)/g1^22 + (2*t^8.66*y)/g1^4 - g1^32*t^8.71*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
687 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_5q_1q_2$ 0.6846 0.8444 0.8107 [X:[], M:[1.0, 1.114, 0.9869, 0.772, 0.785], q:[0.7785, 0.4365], qb:[0.5635, 0.4495], phi:[0.443]] t^2.32 + t^2.36 + t^2.66 + t^2.96 + t^3. + t^3.34 + t^3.95 + t^3.99 + 2*t^4.03 + t^4.33 + t^4.37 + t^4.63 + t^4.67 + 2*t^4.71 + t^4.97 + t^5.01 + t^5.28 + 3*t^5.32 + t^5.36 + t^5.66 + t^5.7 + t^5.92 - t^6. - t^4.33/y - t^4.33*y detail