Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1055 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ | 0.6976 | 0.8709 | 0.801 | [M:[0.9895, 1.1134, 1.0, 0.6702, 0.8866, 0.7836], q:[0.7784, 0.4485], qb:[0.562, 0.438], phi:[0.4433]] | [M:[[18], [-4], [0], [-6], [4], [-10]], q:[[-1], [-7]], qb:[[-11], [11]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | ${}$ | -2 | t^2.01 + t^2.351 + 2*t^2.66 + t^2.969 + t^3. + t^3.681 + t^3.958 + 3*t^4.021 + t^4.33 + 2*t^4.361 + 2*t^4.67 + 2*t^4.702 + t^4.979 + 3*t^5.01 + 4*t^5.319 + t^5.351 + t^5.628 + t^5.66 + t^5.691 + t^5.937 + t^5.969 - 2*t^6. + 3*t^6.031 + t^6.34 + 3*t^6.372 + 2*t^6.618 + 6*t^6.681 + 3*t^6.712 + t^6.927 + 2*t^6.99 + 5*t^7.021 + 2*t^7.052 - t^7.298 + 3*t^7.33 + 4*t^7.361 + t^7.639 + 3*t^7.67 + 3*t^7.702 + t^7.916 + t^7.948 + 6*t^7.979 - 2*t^8.01 + 5*t^8.042 + 3*t^8.288 - 2*t^8.351 + 5*t^8.382 + t^8.597 + t^8.628 - 4*t^8.66 + 3*t^8.691 + 6*t^8.723 + t^8.906 + t^8.937 - 2*t^8.969 - t^4.33/y - t^6.34/y - t^6.681/y - t^6.99/y - t^7.298/y + (2*t^7.361)/y + (3*t^7.67)/y + (2*t^7.979)/y + (3*t^8.01)/y + (3*t^8.319)/y + (2*t^8.628)/y + (2*t^8.66)/y + (2*t^8.969)/y - t^4.33*y - t^6.34*y - t^6.681*y - t^6.99*y - t^7.298*y + 2*t^7.361*y + 3*t^7.67*y + 2*t^7.979*y + 3*t^8.01*y + 3*t^8.319*y + 2*t^8.628*y + 2*t^8.66*y + 2*t^8.969*y | t^2.01/g1^6 + t^2.351/g1^10 + 2*g1^4*t^2.66 + g1^18*t^2.969 + t^3. + t^3.681/g1^8 + g1^24*t^3.958 + (3*t^4.021)/g1^12 + g1^2*t^4.33 + (2*t^4.361)/g1^16 + (2*t^4.67)/g1^2 + (2*t^4.702)/g1^20 + g1^12*t^4.979 + (3*t^5.01)/g1^6 + 4*g1^8*t^5.319 + t^5.351/g1^10 + g1^22*t^5.628 + g1^4*t^5.66 + t^5.691/g1^14 + g1^36*t^5.937 + g1^18*t^5.969 - 2*t^6. + (3*t^6.031)/g1^18 + t^6.34/g1^4 + (3*t^6.372)/g1^22 + 2*g1^28*t^6.618 + (6*t^6.681)/g1^8 + (3*t^6.712)/g1^26 + g1^42*t^6.927 + 2*g1^6*t^6.99 + (5*t^7.021)/g1^12 + (2*t^7.052)/g1^30 - g1^20*t^7.298 + 3*g1^2*t^7.33 + (4*t^7.361)/g1^16 + g1^16*t^7.639 + (3*t^7.67)/g1^2 + (3*t^7.702)/g1^20 + g1^48*t^7.916 + g1^30*t^7.948 + 6*g1^12*t^7.979 - (2*t^8.01)/g1^6 + (5*t^8.042)/g1^24 + 3*g1^26*t^8.288 - (2*t^8.351)/g1^10 + (5*t^8.382)/g1^28 + g1^40*t^8.597 + g1^22*t^8.628 - 4*g1^4*t^8.66 + (3*t^8.691)/g1^14 + (6*t^8.723)/g1^32 + g1^54*t^8.906 + g1^36*t^8.937 - 2*g1^18*t^8.969 - (g1^2*t^4.33)/y - t^6.34/(g1^4*y) - t^6.681/(g1^8*y) - (g1^6*t^6.99)/y - (g1^20*t^7.298)/y + (2*t^7.361)/(g1^16*y) + (3*t^7.67)/(g1^2*y) + (2*g1^12*t^7.979)/y + (3*t^8.01)/(g1^6*y) + (3*g1^8*t^8.319)/y + (2*g1^22*t^8.628)/y + (2*g1^4*t^8.66)/y + (2*g1^18*t^8.969)/y - g1^2*t^4.33*y - (t^6.34*y)/g1^4 - (t^6.681*y)/g1^8 - g1^6*t^6.99*y - g1^20*t^7.298*y + (2*t^7.361*y)/g1^16 + (3*t^7.67*y)/g1^2 + 2*g1^12*t^7.979*y + (3*t^8.01*y)/g1^6 + 3*g1^8*t^8.319*y + 2*g1^22*t^8.628*y + 2*g1^4*t^8.66*y + 2*g1^18*t^8.969*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
662 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.6993 | 0.8739 | 0.8002 | [M:[0.9803, 1.1254, 0.9554, 0.6881, 0.8746, 0.7689], q:[0.7813, 0.4248], qb:[0.5948, 0.4498], phi:[0.4373]] | t^2.064 + t^2.307 + 2*t^2.624 + t^2.866 + t^2.941 + t^3.619 + t^3.861 + t^4.01 + 2*t^4.129 + 2*t^4.371 + t^4.446 + t^4.613 + 2*t^4.688 + t^4.881 + 3*t^4.93 + t^5.005 + t^5.173 + 4*t^5.248 + t^5.49 + t^5.565 + t^5.683 + t^5.732 + t^5.807 + t^5.882 + t^5.925 - 3*t^6. - t^4.312/y - t^4.312*y | detail |