Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
101 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ 0.6359 0.8017 0.7932 [X:[], M:[1.1522, 0.6956], q:[0.75, 0.4239], qb:[0.4239, 0.4022], phi:[0.5]] [X:[], M:[[0, 1], [0, -2]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_2q_1\tilde{q}_2$, $ M_2q_1q_2$, $ M_2q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_2^2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ $q_1q_2^2\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ -1 t^2.09 + 2*t^2.48 + t^3. + 2*t^3.46 + 2*t^3.52 + 2*t^3.98 + 3*t^4.04 + t^4.17 + 2*t^4.57 + 3*t^4.96 + t^5.09 + 2*t^5.48 + 2*t^5.54 + 2*t^5.61 + 2*t^5.93 - t^6. + 3*t^6.13 + t^6.26 + 4*t^6.46 + 4*t^6.52 + 2*t^6.65 + 2*t^6.91 + 2*t^6.98 + 5*t^7.04 + t^7.17 + 4*t^7.43 + 2*t^7.5 + 4*t^7.57 + 2*t^7.63 + 2*t^7.7 + 2*t^7.96 + 4*t^8.02 + 4*t^8.09 + 3*t^8.22 + t^8.35 + 2*t^8.41 - 4*t^8.48 + 4*t^8.61 + 2*t^8.74 + 4*t^8.93 - t^4.5/y - t^6.59/y + t^7.04/y + (2*t^7.57)/y + t^8.09/y + t^8.41/y + (2*t^8.48)/y + (2*t^8.54)/y + (2*t^8.61)/y - t^8.67/y + (4*t^8.93)/y - t^4.5*y - t^6.59*y + t^7.04*y + 2*t^7.57*y + t^8.09*y + t^8.41*y + 2*t^8.48*y + 2*t^8.54*y + 2*t^8.61*y - t^8.67*y + 4*t^8.93*y t^2.09/g2^2 + t^2.48/g1 + g1*g2*t^2.48 + t^3. + 2*g2*t^3.46 + g1*t^3.52 + t^3.52/(g1*g2) + t^3.98/g1 + g1*g2*t^3.98 + g1^2*t^4.04 + t^4.04/(g1^2*g2^2) + t^4.04/g2 + t^4.17/g2^4 + t^4.57/(g1*g2^2) + (g1*t^4.57)/g2 + t^4.96/g1^2 + g2*t^4.96 + g1^2*g2^2*t^4.96 + t^5.09/g2^2 + t^5.48/g1 + g1*g2*t^5.48 + (2*t^5.54)/g2 + t^5.61/(g1*g2^3) + (g1*t^5.61)/g2^2 + (g2*t^5.93)/g1 + g1*g2^2*t^5.93 - t^6. + t^6.13/(g1^2*g2^4) + t^6.13/g2^3 + (g1^2*t^6.13)/g2^2 + t^6.26/g2^6 + t^6.46/g1^2 + 2*g2*t^6.46 + g1^2*g2^2*t^6.46 + g1*t^6.52 + t^6.52/(g1^3*g2^2) + t^6.52/(g1*g2) + g1^3*g2*t^6.52 + t^6.65/(g1*g2^4) + (g1*t^6.65)/g2^3 + 2*g2^2*t^6.91 + t^6.98/g1 + g1*g2*t^6.98 + 2*g1^2*t^7.04 + (2*t^7.04)/(g1^2*g2^2) + t^7.04/g2 + t^7.17/g2^4 + t^7.43/g1^3 + (g2*t^7.43)/g1 + g1*g2^2*t^7.43 + g1^3*g2^3*t^7.43 + t^7.5/(g1^2*g2) + g1^2*g2*t^7.5 + g1^3*t^7.57 + t^7.57/(g1^3*g2^3) + t^7.57/(g1*g2^2) + (g1*t^7.57)/g2 + (2*t^7.63)/g2^3 + t^7.7/(g1*g2^5) + (g1*t^7.7)/g2^4 + t^7.96/g1^2 + g1^2*g2^2*t^7.96 + g1*t^8.02 + t^8.02/(g1^3*g2^2) + t^8.02/(g1*g2) + g1^3*g2*t^8.02 + g1^4*t^8.09 + t^8.09/(g1^4*g2^4) + t^8.09/(g1^2*g2^3) + (g1^2*t^8.09)/g2 + t^8.22/(g1^2*g2^6) + t^8.22/g2^5 + (g1^2*t^8.22)/g2^4 + t^8.35/g2^8 + (g2*t^8.41)/g1^2 + g1^2*g2^3*t^8.41 - (2*t^8.48)/g1 - 2*g1*g2*t^8.48 + t^8.61/(g1^3*g2^4) + t^8.61/(g1*g2^3) + (g1*t^8.61)/g2^2 + (g1^3*t^8.61)/g2 + t^8.74/(g1*g2^6) + (g1*t^8.74)/g2^5 + t^8.93/g1^3 + (g2*t^8.93)/g1 + g1*g2^2*t^8.93 + g1^3*g2^3*t^8.93 - t^4.5/y - t^6.59/(g2^2*y) + t^7.04/(g2*y) + t^7.57/(g1*g2^2*y) + (g1*t^7.57)/(g2*y) + t^8.09/(g2^2*y) + (g2^2*t^8.41)/y + t^8.48/(g1*y) + (g1*g2*t^8.48)/y + (2*t^8.54)/(g2*y) + t^8.61/(g1*g2^3*y) + (g1*t^8.61)/(g2^2*y) - t^8.67/(g2^4*y) + (2*g2*t^8.93)/(g1*y) + (2*g1*g2^2*t^8.93)/y - t^4.5*y - (t^6.59*y)/g2^2 + (t^7.04*y)/g2 + (t^7.57*y)/(g1*g2^2) + (g1*t^7.57*y)/g2 + (t^8.09*y)/g2^2 + g2^2*t^8.41*y + (t^8.48*y)/g1 + g1*g2*t^8.48*y + (2*t^8.54*y)/g2 + (t^8.61*y)/(g1*g2^3) + (g1*t^8.61*y)/g2^2 - (t^8.67*y)/g2^4 + (2*g2*t^8.93*y)/g1 + 2*g1*g2^2*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
160 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_2\tilde{q}_2$ 0.6567 0.843 0.7791 [X:[], M:[1.1525, 0.6949, 0.6728], q:[0.75, 0.4246], qb:[0.4228, 0.4025], phi:[0.5]] t^2.02 + t^2.08 + 2*t^2.48 + t^3. + 2*t^3.46 + 2*t^3.52 + t^3.98 + 3*t^4.04 + t^4.05 + t^4.1 + t^4.17 + t^4.49 + t^4.5 + t^4.56 + t^4.57 + t^4.95 + 2*t^4.96 + t^5.02 + t^5.08 + 4*t^5.48 + 4*t^5.54 + t^5.6 + t^5.61 + t^5.93 + t^5.94 + t^5.99 - t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
64 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ 0.6155 0.7629 0.8067 [X:[], M:[1.1409], q:[0.75, 0.4296], qb:[0.4296, 0.3909], phi:[0.5]] 2*t^2.46 + t^3. + 2*t^3.42 + 2*t^3.54 + t^3.85 + 2*t^3.96 + 3*t^4.08 + 3*t^4.92 + 2*t^5.46 + 2*t^5.88 - t^6. - t^4.5/y - t^4.5*y detail